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An approximate method is presented for the analysis of  the conservation equations used to describe the 
effect of  a variation of  electrolyte concentration and electrode potential on electrochemical reactions in 
porous electrodes. Asymptotic solutions are obtained for reaction following Tafel kinetic behaviour or 
a Butler-Volmer approximation and linear approximations are used to define the limits of  the asymptotic 
solutions. Porous electrode behaviour is characterized in terms of  effectiveness. 

Nomenclature 

a specific area of  particulate electrode ( m - ' )  
c b bulk electrolyte concentration (molm -a) 
ci concentration of  species i (molm -3) 
Co reference concentration at x = 0 (molto -3) 
c s surface concentration (molm -3) 
D i diffusivity of  species i (m 2 s -1) 
E effectiveness (dimensionless) 
F Faraday constant (Coulombs mo1-1) 
i local current density or reaction rate (A m -2) 
i0 exchange current density ( A m  -z) 
i T total current density based on cross-sectional area of  the electrode (A m -z) 
I dimensionless current density = iT/aioL 
km average mass transfer coefficient (ms -1) 
L bed height in the direction o f  current flow (m) 
n number o f  electrons involved in reaction 
N i flux of  species i (mol cm -2 s -1) 
R gas constant (calmo1-1 K -1) 
s dimensionless parameter 
T temperature (K) 
x distance in the direction of  current flow (m) 
y dimensionless distances in the direction of  current flow = x/L 
a charge transfer coefficient (dimensionless) 
j3 nF/RT (V -1) 
~i dimensionless parameter = Li~/K 
5' dimensionless parameter = a~ or (1 -- a)~ 

overpotential = ~m -- ~bs 
t~ effective conductivity of  electrolyte phase ((g2m) -1) 
v 2 dimensionless parameter = aioL2~/K 
q~ dimensionless potential = 137 
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~bo value of  ~b at y = 0 
$1 value of  q~ at y = 1 
q~o electrochemical Thiele modulus 

1. Introduction 

There are many examples of  the industrial use of  porous electrodes especially where intimate contact 
of  electrode material with solution and possibly a gas is essential. Batteries, fuel cells and similar devices 
are probably the main areas of  application with specific requirements such as compactness and large 
interfacial area [1 ]. Another potential area of  application is in the treatment of  waste streams and in 
electro-organic synthesis [ 1 ]. Then flow-through porous-electrodes are used where electrolyte is con- 
tinuously circulated through the cell whereas in the case of  say fuel cell electrodes, diffusion is the main 
contributor to mass transport. This paper is concerned with a theoretical one-dimensional analysis of  
electrodes of  the latter type in which reaction rates are distributed unevenly due to diffusion as well as a 
variation in electrode potential. Flow-through porous-electrodes can be considered as a limiting case of  
this analysis. 

The treatment of  the problem of  a simultaneous variation in electrolyte concentration and potential 
distribution in the electrode is treated in an analogous manner to that o f  non-isothermal chemical 
reactions in porous catalysts [2]. Approximate asymptotic solutions are obtained for reactions following 
Tafel kinetics and a Butler-Volmer approximation and which are either first or second order with 
respect to reactant concentration. The results of  the analysis are presented in terms of  the engineering 
concept of  effectiveness and it is shown that four dimensionless groups or numbers control the electrode 
behaviour. The strength of this approach to the problem is that it allows a quick assessment of  the 
proportion of  a porous electrode used in practice or of  the likely performance of  the electrode given 
relevant kinetic, physical and structural parameters. Primarily we are interested in determining when a 
porous electrode is not effectively used and hence the region of  concern is where the asymptotic approxi- 
mation gives a reasonable representation of  'actual'  behaviour. 

One of  the main failures of  the model is that transient behaviour is not considered, however this 
analysis should serve as a useful starting point at which specific time varying parameters may be later 
incorporated. 

2. Analysis 

In the mathematical modelling of  porous or particulate bed electrodes a one-dimensional analysis has 
frequently proved satisfactory and as such is adopted in this treatment [ 1 ]. An inherent part of  any 
model is the adoption of  certain simplifying assumptions which minimize mathematical complexity 
while maintaining practical significance. Assumptions adopted in this analysis are therefore as follows: 

1. The porous electrode is one dimensional and both solid and electrolyte phases are continuous 
media with uniform effective conductivities.* 

2. Isothermal and steady state conditions apply. 
3. The electrical potential o f  the dispersed (solid) phase is constant. 
4. Ohm's  Law is applicable to electrical conduction in the electrolyte phase. 
5. Ionic migration of  the reacting species is neglectied.* 
6. The electrode is characterized by a uniform specific area, a. 
7. The flux of reacting species (Ni) is given by Fick's Law 

* For a binary electrolyte variation in electrolyte conductivity and the influence of migration of reacting species can be 
accounted for. The governing equations are similar to those considered in this analysis but the dimensionless groups 
which control the electrode behaviour are modified slightly [ 3]. 
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Fig. 1. The one-dimensionless porous electrode. 

Ni = _ D  i dci 

where the diffusion coefficient D i of  species i is uniform throughout the structure. 
With the above assumptions the mathematical model can be established for the system in Fig. 1 by 
considering charge and material balance in the structure. By applying Ohm's Law to electrical con- 
duction in the electrode, a charge balance on the differential element o f  thickness, dx, leads to the 
following differential equation: 

d2r/ ai 
- ( 2 )  dx 2 K 

where 77 is the local overpotential in the structure, ~, the effective conductivity of  the electrolyte phase 
and i is the local reaction rate at the solid, liquid interface. The analysis considers a variety of  kinetic 
expressions for i but the influence o f  limiting current behaviour is not included. 

A material balance on a differential element, dx, of  the electrode structure leads to the following 
diffusion equation: 

d2c a 
D ~ - ~  = n--~i (3) 

where c is the reactant concentration. Boundary conditions which apply to this equation are at 

X : O, C = Co, r/ = r/O 
and 

dc dr/ 
x = L ,  - -  = O, - -  = O. 

dx dx 

The measurable or total current density based on the cross-sectional area of  the electrode is given by: 

iT = - -  n F D  (4) 
X=O 
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o r  

i T  = - K ( 5 )  
X=0 

It is convenient at this stage in the analysis to introduce dimensionless parameters which characterize the 
electrode and its performance and to consider specific electrochemical kinetics. 

3. Tafel polarization 

The equation for Tafel kinetics is of the form: 

i = io Co-- exp a ~ -  r/ (6) 

where io is the exchange current density and o~ the charge transfer coefficient. The concentration depen- 
dency of the reaction is 1st order. On substituting in Equations 2 and 3 and introducing the following 
dimensionless parameters: 

X 
y = _ ~ = ~ 

L 

v2 _ a ioL2~  13 = n F  

t~ R T  

we obtain: 

s = L 2 aio C = c 

n F D c o  Co 

d 2 0  - Cv  2 exp (a~b) (7) 
dy 2 

d2C 
- Cs exp (a~b). (8) dy 2 

To assist in the solution of these differential equations we can obtain a relationship between C and ~b by 
combining Equations 7 and 8 to give: 

d2~b V 2 d2C 
- ( 9 )  dy 2 s @2 

which on integration results in: 

v2 
(~b-- ~bo) = 7 (C--  1). (10) 

Hence the potential and concentration drops across the electrode structure are related by the two par- 
ameters v 2 and s. 

Combining Equations 7 and 10 gives: 

d2---~ = v 2 1+~5( r  o exp(ar  (11) 
dy 2 

the exact solution of which requires numerical techniques. However the problem in hand is not con- 
cerned specifically with either the potential distribution or concentration distribution but with a more 
global view of a porous electrode performance by way of its effectiveness, E, which is defined in the 
following manner: 
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Actual reaction rate (or current density) 
E =  

Reaction rate (or current density) without mass 
transport and ohmic drop limitations 

In other words we are interested in the utilization of  the electrode in relation to its maximum theoretical 
performance. As such, we are more concerned with the estimation of  an electrode's performance 
(effectiveness) at conditions other than near the maximum theoretical values and hence approximate 
solution techniques are adopted. The main approximation is that of  obtaining asymptotic solutions as 
follows. These have been applied quite successfully to the analogous case of  non-isothermal effectiveness 
factors in porous catalysts [2] and to porous electrodes without diffusion limitations [4]. 

4. Results and discussion 

4.1 .Asymptotic solution (q~l ~ O) 

For an asymptotic  solution the electrode is assumed to be semi4nfinite and the boundary condition at 
y = 1 is ~1 = 0. On first integration of Equation 11 we obtain: 

l[(d~-I ]2 l[dfdy')y ]2 v2 ( s ) 
~t t~yj ,=0 ] - - ~  =, = fo ~~ 1 +~5(q~--q~o) exp(a~b) dq~ 

:..[ ( s )  1( 
expaq~~ 1 ~ ; - - ;  1 u 00 . (12) 

The boundary condition at y = 0, Equation 5 in dimensionless form becomes: 

d(~_~] = _ p21 (13) 
~ay/y =0 

where I = iT/(aioL), a dimensionless total current density. Combining Equations 12 and 13 results in the 
polarization equation of  the porous electrode as: 

{[ ( ) O s 1 s s 2 _exp(aq~o) 1 - - u - ~  a 
~ =  7 ~ - -  - ~ 0 - - - ~ / j )  (14) 

and the effectiveness is given by: 

I 
E - exp (aqSo)" (15) 

Typical effectiveness data is presented in Fig. 2 as a function o f t  for a transfer coefficient c~ = 1/2. 
Increasing the parameter s is seen to decrease the effectiveness at fixed I values due to a relative decrease 
in the diffusivity which enhances reactant depletion in the electrode. The dimensionless group s can be 
considered to be an electrochemical Thiele modulus. At sufficiently low values of  s the data approaches 
limiting lines for specific v 2 values because reactant depletion is not significant. The data in this case is 
essentially that of  a zero order reaction and is therefore given by the corresponding constant concen- 
tration analysis [5] and is correlated at high I in terms of  a dimensionless parameter 6 = p2I using 
the expression: 

2 
8' (16) 

where 8'  = (1 -- a)8 or 18 depending on whether the reaction is cathodic or anodic. Exact data for the 
zero order reaction is shown as dotted lines for v 2 = 1 and 3. For v 2 > 10 agreement between the exact 
and asymptotic solutions is very- good for the zero order reaction. 
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Fig. 2. The variation of effectiveness with total current I for the asymptotic solution q~l = 0. (~ = 0.5). 

Curve a: u 2 = 1, s = 0.01 and 0.001 ; Curve b: u 2 = 1, s = 0.01 ; Curve c: v 2 = 3, s = 0.001; Curve d: v 2 = 3, s = 0.1 ; 
Curve e: v 2 = 3, s =  1; Curve f: v 2 = 10, s =  1; Curve g: z, ~ = 100, s = 1. 

.................... exact solution s --* 0. - . . . . .  linear polarization 'asymptotes' from Equation 17 (values of u s indicated). 

At  high values o f  v 2 where  effect iveness is general ly low the inf luence o f  s is no t  too  significant, 

especially at low values o f  I where  the data  should t end  towards l imit ing values given by  a similar 

cons tant  concen t ra t ion  analysis [6] using the  linear approx ima t ion  o f  the  more  general  B u t l e r - V o l m e r  

equat ion .  This is because at low potent ia ls  and currents  (where the asympto t ic  analysis general ly over- 

predicts  E )  reac t ion  rate and hence  reactant  consumpt ion  is low and f rom Equat ion  10 concen t ra t ion  

will  be qui te  un i form.  An upper  bound  can then  be st ipulated for effectiveness [6] which  is dependen t  
on  the  value o f  v 2, i.e. 

t anh  (v) 
E - (17)  b' 

A more  precise approach is to t reat  the analysis as described by  Equat ions  2 and 3, using linear polariz- 
a t ion kinetics,  the  solut ion o f  which  can be obta ined  in terms o f  Elliptic Integrals. 

The fo rm o f  the asympto t ic  solut ion Equa t ion  13 considered suggests that  when the ratio s /u  2 

becomes  >> 1 the analysis breaks down.  This is conf i rmed  fur ther  f rom Equa t ion  10 which  when  r -- 0 
becomes:  

S 
C1 = 1 - ~ r  

implying negative values o f  concen t ra t ion  C 1 at mode ra t e  values o f  r Hence an al ternat ive asympto t ic  
analysis is preferred in which  the  concen t ra t ion  at y -- 1 approaches zero. 
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4.2. Asymptotic analysis (C 1 = 0) 

In this analysis the depletion of reactant is of greater consequence than the potential drop over the 
electrode which from Equation 10 is equal to v2/s and hence is small for large values of s/v 2. The asymp- 
totic solution is obtained by first combining Equations 8 and 10 which gives: 

dY 2 - sCexpa ( C - - 1 ) + r  (18) 

and on first integration gives: 

2l~dy/,=oJ 
{[ )}' sexp (r exp (a:--~2 C) ( C - s  

OL /2 2 

~ s  0 

From Equation 4 the boundary condition at y = 0 in dimensionless form becomes: 

dC 
- sI 

dy 
and hence Equation 19 becomes: 

I= (2exp [a (r Us )l lexl' ("~ ~) + 

(19) 

(20) 

(21) 

T 
E 

..... i . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ............ 

L~ . . . . . . . . . . . . . . . . . .  i 

0.1. 
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0.1 1 10 100 

Fig. 3. The variation of effectiveness with total current I for the asymptotic solution C l = 0. (~ = 0.5). 

s 0.001 0.01 0.1 1.0 10 0.1 1.0 10 1.0 10 1 
v 2 1.0 1.0 1.0 1.0 1.0 0.1 0.1 0.1 10 10 100 
Curve a b c e g a d g f h i 

.................... first order reaction at constant potential (values of s indicated). 
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which  describes the polar izat ion characterist ics o f  the porous  e lectrode.  The effectiveness is again given 

by  Equa t ion  15. Typical  effect iveness data is presented in Fig. 3 as a func t ion  o f  I for various values o f  

v 2 and s (c~ = 1/2). 

Unlike the former  asympto t ic  case, data  in all cases is represented by a part icular  straight line 

depending on v 2 and s. At f ixed values o f  v 2, effect iveness decreases wi th  increasing values o r s  as 

expec ted .  At  high values o f / d a t a  f rom b o t h  asympto t ic  analyses agree at corresponding v 2 and s. 

At  low values o f  r the  variat ion o f  po ten t ia l  for react ions wi th  low diffusivity or  low reactant  con- 

cen t ra t ion  (say in gas diffusion electrodes)  will  be o f  the order o f  a few m V  and hence the system 

approaches  a cons tant  e lect rode potent ia l  and the  solut ion o f  Equa t ion  18 can be wr i t ten  in terms of  

the  well  k n o w n  expression for effect iveness o f  a first order chemical  react ion in a porous  catalyst ,  i.e. 

tanh q~ 
E - (22)  

where  for an electro-chemical  react ion o f  the Tafel  type  the Thiele modu lus  ~ = [s exp (~r ,/2. This 

expression can assist in defining the range o f  usefulness o f  this asymptot ic  solut ion as it st ipulates a 

m a x i m u m  value o f  E which  can be achieved for a part icular  value o f  s. F r o m  this linear analysis the 

polar iza t ion  equa t ion  is given by :  

tanh  (~0)  
I - (23)  

~o  

f rom which we can compu te  the  effect iveness as a func t ion  o f  the to ta l  current  densi ty  I .  This data is 

%-:,,, -% ,. 

,,,oo--\ 
o o l  , , , , , 

0.1 1 I " 10 100  

Fig. 4. Effectiveness data for a second order reaction asymptotic solution q~o comparison with first and zero order 
reactions. 
v 2 = 1,s = 0.1 Curve a: zero order, Curve b: 1st order, Curve c: 2nd order 
v ~ = lO, s = 0.1 Curve d: zero order and 1st order, Curve e: 2nd order 
v 2 = lO, s = 1 Curve f: 1 st order, Curve g: 2nd order. 

Curve h: v 2 = 100, s = 0.01 2nd order; Curve i: v 2 = 100, s = l ,  2nd order dotted lines = linear polarization constant 
concentration 'asymptote'. 
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presented in Fig. 3 (dotted lines) where, as expected, higher values of  s produce lower effectiveness 
which decreases only slightly with I in comparison to the asymptotic solution. 

4.3. Second order reactions 

In general the concentration dependency of a reaction is determined experimentally and as such can be 
of order greater than or less than unity. We have previously considered a 1 st order reaction and indirectly 
a zero order reaction (s ~ 0) and it is therefore useful to extend the analysis to a second order reaction. 
The theoretical development of the asymptotic expressions to predict the polarization behaviour is 
similar to the first order case and as such is presented in the Appendix. Typical effectiveness data pre- 
dicted by the analysis is presented in Fig. 4 (asymptotic solution ~1 = 0) and in Fig. 5 (asymptotic 
solution C1 = 0) as a function of the total current I. Overall the trend in the data is similar to the first 
order case except that because of the higher order of reaction the depletion of reactant is more signifi- 
cant. Hence for the same values of  u: and s, E values are lower for the 2nd order reaction, as seen in 
Fig. 4. The influence of reaction order at fixed u: becomes less significant as s decreases (see Fig. 5) so 
much so that when s = 0.01 (v 2 = 1) there is little difference in effectiveness for second, first or zero 
order reactions. The behaviour of the 1st and 2nd order (and zero order) reactions at high values of  v 2 
and very low values of  s is identical. 

In the asymptotic solution for r = 0 and at low values of  I or r when the kinetic behaviour can be 
represented by a linear approximation of the Butler-Volmer equation, the data should approach the 
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Fig. 5. Effectiveness data for  a second order reaction asymptotic solution C 1 = 0. 

C u r v e  a :  v 2 = 1, s = 10 ;  C u r v e  a ' :  1st  o r d e r  r e a c t i o n  ( d a s h e d  l ines)  
C u r v e  b :  v 2 = 1,  s = i ;  C u r v e  b ' :  1s t  o r d e r  r e a c t i o n  ( d a s h e d  l ines)  
C u r v e  c: v 2 = 1,  s = 0 . 0 1 ;  C u r v e  c ' :  1st  o r d e r  r e a c t i o n  ( d a s h e d  l ines)  
C u r v e  d:  v 2 = 1, s = 0.1 ; C u r v e  d ' :  1s t  o r d e r  r e a c t i o n  ( d a s h e d  l ines)  
C u r v e  e:  v 2 = 1,  s = 1;  C u r v e  e ' :  1 st o r d e r  r e a c t i o n  ( d a s h e d  l ines)  
C u r v e  f :  v 2 = 1,  s = 0 . 1 ; C u r v e  f ' : / s t  o r d e r  r e a c t i o n  ( d a s h e d  l ines)  

D o t t e d  l ines  = c o n s t a n t  p o t e n t i a l ,  2 n d  o r d e r  r e a c t i o n  ' a s y m p t o t e '  

I 

1 ) 0  
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limiting values given by this analysis for the 1st order reaction. This again allows us to determine limits 
of applicability of the asymptotic solution. 

In the alternative asymptotic solution (when C1 = 0), the limiting case of a constant potential elec- 
trode operating at low potentials, i.e. a second order reaction has been solved for the analogous treat- 
ment in porous catalysts [7]. The results of this limiting case which define a useful range of applicability 
of the asymptotic solution are indicated in Fig. 5, (dotted lines). 

5. Alternative electrode kinetics - Butler-Volmer approximation 

Classical electro-chemical kinetic theory treats the general electrode reaction as reversible and leads to 
the Butler-Volmer equation which for a first order reaction can be written as: 

l 1 i = io - -  exp (a~) -- cR exp [-- (1 -- a)~b] (24) 
CO CRo 

where CR and CRo are the concentrations of product species in the bulk and at the electrode surface. 
The approximation of this equation considered here treats the reaction as irreversible, i.e. dependent 

only on the reactant concentration while maintaining the general characteristics of the Butler-Volmer 
equation by including the second exponential term in Equation 24. The equation then becomes: 

C 
i = io - -  {exp (aq~) - exp [ -  (1 - a)~]}. (25) 

CO 

Comparing Equations 24 and 25: at low potentials the surface concentrations do not differ much from 
their bulk solution values so both equations reduce to the same form and at high potentials the second 
exponential term in both equations approach zero so again the equations are identical. 

The asymptotic solutions to Equations 2 and 3 using kinetics described by Equation 25 are derived 
in similar ways to those for Tafel kinetics and result in the following polarization equations: 

For  ~1 = 0 

For C1 = 0 

i = / a 1--  + (1 1 v2(12_a) 

1 [ l _ S  ( 1)] 1 [1 s (( 1 o)]}) ~ 
a ~ ~o + ( l - - a )  - -~-2  l - - a )  ~b (26) 

s)sexp, l O 0o,( s ) 
a v  ~ - a - ~  + (1 - , 0 v  ~ 1 + v ~ ( 1 - _  a )  

-M (av~)2  (1 - a )  ~ (v~)2 J} (27) 

Typical effectiveness values predicted from these equations are presented in Fig. 6 (~1 = 0) and Fig. 7 
(C1 = O) as a function of I and are compared to the corresponding predictions from the Tafel analysis. 
The general behaviour of the data is similar to the Tafel analysis with respect to the effect of the par- 
ameters v 2, s and I. 

Considering Fig. 6, at high I the data for both kinetic expressions converge and at low I data 
approaches limiting values. At targe values of v 2 these values are given by the linear approximation to the 
Butler-Volmer equation. The important difference between the Butler-Volmer and Tafel analysis is 
apparent in the intermediate regions of I where both the asymptotic and linear approximations tend to 
overpredict effectiveness. Here values as predicted by the Butler-Volmer analysis are lower and are in 
good agreement with data for exact solutions (dotted lines s -+ 0) when v 2/> 3. Even at lower v 2 reasoa- 
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Fig. 6. Comparison of effectiveness for the Butler-Volmer approximation and the Tafel equation. Asymptotic solutions 
~i = 0. 

�9 :v 2 = l , s = 0 . 0 1 a n d 0 . 0 0 1 ; + : v  2 = l , s = 0 . 1 ; x : v  2 = 3 , s = 0 . 1 , v : v  2 = 3 , s = 0 . 0 0 1 , , : v  2 = 1 0 , s = 0 . 1 ; A :  
v 2 = 10, s = 1;o: v 2 = 10, s =  10. 
Solid lines are Butler-Volmer data. Dashed lines are corresponding Tafel data. Dotted lines exact solutions when s ~ 0 
(zero order reaction). 

able agreement between the But ler-Volmer  approximation and exact solutions is achieved. Therefore 
the But ler-Volmer  approximat ion gives a better estimate of  effectiveness than the Tafel analysis 
especially when reaction kinetic behaviour diverges from Tafel behaviour. Comparing the effectiveness 
data in Fig. 7 (C1 = 0) it can be seen that at relatively low values o f l t h e  Butler-Volmer curves diverge 
from the Tafel lines and predict lower effectiveness values. 

6. Polarization behaviour 

Typical polarization curves for the semi-infinite porous electrode as predicted by the asymptot ic  sol- 
utions are presented in Figs. 8 and 9 for a = 0.5. Data for the Tafel analysis, But ler-Volmer approxi- 
mation and linear polarization are presented. As both the resistance parameter u 2 and diffusion parameter  
s increase the potential  and current distributions become increasingly non-uniform at constant total  
current density I .  At high potentials all the data exhibit the characteristic linear relationship between 
and In I ,  the slope of  which is twice that for a planar electrode. The polarization curve for Tafel kinetics 
of  a porous electrode with a uniform reaction distr ibution is drawn in Figs. 8 and 9 and is identical to 
the polarization curve of  a planar electrode with the same area. 

Comparing the Tafel behaviour and But ler-Volmer  behaviour in Fig. 8, at high potentials the polar- 
ization behaviour is identical while at lower potentials the polarization data differ significantly, especially 
at lower v 2 and high s values, with the But ler-Volmer currents at constant ~b0 the lower of  the two. At 
low ~o the But ler-Volmer behaviour is comparable to the linear polarization constant concentrat ion 

situation. A similar polarization behaviour is observed with the other asymptotic  solution in Fig. 9. By 
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Fig. 7. Comparison of effectiveness for the Butler-Volmer approximation and the Tafel equation, asymptotic solution 
C 1 = 0. 
X : u 2 = l , s = l ; v : v 2 = l , s = 3 ,  u:u2=3,s=5;A:  v2 = 1,s = 10;z~: v~ = 10, s = 10. 

Solid lines are Butler-Volmer data, dashed lines are corresponding Tafel data. 

combining the polarization characteristics of  porous electrodes with effectiveness data it is a simple task 
to assess the effect of  electrode potential  on effectiveness. 

7. Generalization of the analysis 

7.1. Implication to gas diffusion electrodes 

In operat ion gas diffusion electrodes and similar devices as well as being subjected to potential  and con- 

centrat ion distributions in the electrode/electrolyte structure are also influenced by the rate of  gas 
transport  (through a porous structure) to the gas/liquid interface. Under these conditions the global rate 
of  reaction is given by  an expression describing external mass transfer: 

i = nFk m [c b - -  Co] (28) 

where km is the external gas phase mass transfer coefficient based on the cross-sectional area of  the 
electrode. The reaction rate is also given by:  

i = ECo (~o)  exp (~r (29) 

Combining both  expressions to eliminate Co gives: 
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Fig. 8. Typical polarization curves for 
the asymptotic solution ~1 = 0 for Tafel 
kinetics and the Butler-Volmer approxi- 
mation. 

Butler-Volmer curves (solid lines) 
�9 : v 2 = 1 , s =  0 . 1 ; X :  v 2 = 3 , s  = 0 . 1 ;  

�9 : v 2 = 3 , s =  0 . 5 ; . :  u s = 1 0 ,  s =  0 . 1 ;  

A: v 2 = 100, s =  1. Tafel curves (dashed 
lines) o: v 2 = 1,s  = 0 .1 ;+ :  v 2 = 3, 
s : 0.1; D: v ~ = 10, s = 0.1;zx: v 2 = 100, 
s = l .  

Dotted lines - linear polarization con- 
stant concentration, curve a: v 2 = 1 ; 
curveb: v 2 = 10;curve c: v 2 = 100. 

i = cb (30)  
1 1 

nFKmE(i-~~ exp(~)~ 

a genera l  express ion  for  d e t e r m i n i n g  the  overal l  c u r r e n t  dens i ty  the  e lec t rode  can  suppor t .  S i tua t ions  

m a y  arise whe re  th i s  e q u a t i o n  reduces  to  one  o f  two  l imi t ing  forms,  for  example  in par t ia l ly  i m m e r s e d  

gas d i f fus ion  e lec t rodes  [8] mass  t r a n s p o r t  in the  gas phase  m a y  t e n d  to  c o n t r o l  the  r eac t i on  ra te .  

7.2. Influence of mass transfer in the liquid phase 

In p o r o u s  e lec t rodes  ope ra t ing  w i t h  spar ingly  soluble  reac tan t s ,  such  as l e a d - l e a d  su lpha te  negat ive  

e lec t rodes ,  the  act ive species dissolve and  are t r a n s p o r t e d  b y  d i f fus ion  to  an  e lec t ro -chemica l ly  act ive 

site. A n  effec t ive  d i f fus ion  p a t h  can  be  a s s um ed  for  each  species w h i c h  r ep resen t s  a typ ica l  d i s tance  

b e t w e e n  a s torage site and  an  act ive site whe re  r eac t i on  takes  place. The  ma te r i a l  is t r a n s p o r t e d  b y  

d i f fus ion  over  th i s  d i s t ance  and  h e n c e  we can  def ine  a mass  t r ans fe r  coef f i c ien t  for  th is  s tep w h i c h  con-  

t ro is  t he  f lux  o f  act ive ma te r i a l  to  the  site. This  mass  f lux  is de f ined  in a similar m a n n e r  to  E q u a t i o n  28. 
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Fig. 9. Typical polarization 
curves for the asymptotic 
solution C z = 0 for Tafel 
kinetics and the Butler- 
Volmer approximation. 
Butler-Volmer curves (solid 
lines) v: v: = 0.1,s = 0,1; 
A: v 2 = 0 . 1 , s  = 1 ; o :  v 2 = 1 ,  

s = l ; X : v 2 = l , s = 3 ;  
+ :v  2 = l , s = l O .  
Dashed lines are corre- 
sponding Tafel data. Dotted 
lines are for linear analysis 
using Equation 23. 
a: s =  0.1;o: s=  1;D: s =  3; 
v : s = 1 0 .  

This represents a rather special case [9] as transport of  species to and from the bulk solution is not 
considered and hence no concentration distribution essentially exists within the bulk electrolyte. This 
problem has been treated by a previous analysis [4] for relatively high overpotentials. A characteristic of  
electrode performance observed from this analysis is that at low values of  kmc b a mass transport limi- 
tation may occur in batteries which limits obtainable power densities. 

A more general treatment o f  porous electrode behaviour would incorporate limitations in mass trans- 
port  of  reactants and products from bulk electrolyte to electrode surface (as described by Equation 28) 
with a reaction kinetic equation of  the general Butler-Volmer type and then subsequently solving the 
conservation equations. In this way observed limiting current behaviour, for example with porous Pt 
electrocatalysts during hydrogen oxidation [10] may be described. 

8 .  C o n c l u s i o n s  

By applying relatively simple approximations to the solution of  the conservation equations describing 
porous electrode behaviour the influence of  the various system parameters on performance can be 
quantitatively assessed easily and with reasonable accuracy. The approximations place no reliance on 
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numerical computer techniques which generate data accurately but tend to obscure the physics of the 
system. It has been shown that the performance of a porous electrode under activation control is essen- 
tiaUy governed by two dimensionless parameters v 2 and s, both of which impose maximum values of 
effectiveness. The electrochemical Thiele modulus (diffusion parameters) s, which governs reactant con- 
centration distribution in the electrode, specifies by way of Equation 22 the maximum value of effective- 
ness for a uniform electrode potential distribution. When the electrode potential distribution becomes 
increasingly non-uniform (i.e. when u 2 increases) effectiveness decreases below this maximum due to 
limitations in electrolyte conductivity. 

The assumption that the porous solid phase is isopotential may not always be reasonable and hence 
current flow through this structure should be considered in a more general analysis. If the electrolyte 
resistivity is at least equal to or greater than that of the solid then the electrode should be more effective 
than in the isopotential situation as current can penetrate further into the structure and hence reaction 
rates are more uniform. This situation will be the subject of a more general analysis in relation to the 
performance of fluidized bed electrodes. 

Appendix 

Asymptotic solutions for a second order reaction 

The equations describing the potential and concentration variation in porous electrodes are: 

d2r = C-av 2 exp (ar (A1) 
dy ~ 

d2C 
dy 2 - C-as exp (a~b) (A2) 

p2 

- -  = - -  ( C - -  1 ) .  r ~o s 

The asymptotic solution when ~1 = 0 is obtained by combining Equations A1 and A3 to give: 

@2 ~5 (~b -- ~b0) exp (a0) 

and on first integration yields: 

= u 2 + ( r  ~bo) exp (aq~) d~ 
2 \dy]  Jo F 

{ [ ( ; ( )  _ u ~ e x p ( a ~ b )  1 - -  s s s 
~ o  +2 i - ; ~ o  7 - 

+ ~ 0 - 7  ~11)o 

which then gives an expression for the polarization characteristics as: ; (  x ) ( 1 ) ,  2 (~o) e x p  
- ~ o  +2 1 ~4o 12 - -  b' 2 

F+  21 21 
The effectiveness is given by: 

(a3) 

(A4) 

(A5) 

(A6) 
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I 
E - (A7) 

exp (O~o)" 

The asymptot ic  solution when C 1 "+ 0 is obtained in a similar manner to above. Combining Equations A2 

and A3 gives: 

which on integration gives: 

d2C 
dy 2 = s exp [a(~bo --  v2/s)] C 2 exp (cav2/s) (A8) 

2(s212) = s exp 

which gives the polarization characteristics as: 

O~p 2 

- -  - -  + ( A 9 )  
~o v 2 ~v: (~v:)2/I 

'1 $ Jo 

2 +  2'~ 2exp(--c~vZ/s)] t  ~ 
(AaO) 

and the effectiveness is again given by Equation A7. 
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